Fragen zum 2. Chemiebonustest

- 1. a. Was versteht man unter einer exothermen und endothermen Reaktion?
 - b. Erklären sie anhand eines Energiediagramms eine endotherme Reaktion
 - c. Um welche Reaktion handelt es sich, wenn man Kohlenstoff verbrennt? (Gleichung)
 - d. Wie reagieren Wasserstoff und Sauerstoff mit einem Funken?
 - e. Wie reagieren Wasserstoff und Sauerstoff bei Zimmertemperatur?
- 2. a. Welche Regeln und Gesetze müssen beim Aufstellen einer Reaktionsgleichung eingehalten werden? Stellen sie Gleichungen auf oder vervollständigen sie die Gleichung
 - b. Verbrennung von Koks
 - c. Bildung von Ammoniak aus den Elementen
 - d. Bildung von Aluminiumchlorid aus den Elementen
 - e. Reaktion von Schwefeldioxid mit Sauerstoff
 - f. Bei der Reaktion von Sauerstoff mit Aluminium entsteht Aluminiumoxid
- 3. Vervollständigen Sie die Reaktionsgleichung oder stellen Sie sie auf
 - a. Calcinieren (=Brennen) von Kalk
 - b. Rösten von Zinksulfid

```
c. NO + NH<sub>3</sub> -----> N_2 + H_2O
```

d.
$$Ca + O_2$$
 -----> CaO

- e. $2 H_2O$ -----> $H_2 + O_2$
- f. $CO_2 + H_2O$ -----> $C_6H_{12}O_6 + O_2$
- g. $NaOH + H_2SO_4 -----> Na_2SO_4 + H_2O$
- h. Pb + HNO_3 -----> $Pb(NO_3)_2$ + H_2
- i. HNO_3 -----> H_2O + NO_2 + O_2
- j. Zn + 2 HCl -----> $ZnCl_2 +$ _____
- k. H₂SO₄ + 2 NaCl -----> Na₂SO₄ + ____
- 4. a. Was versteht man unter einer Säure? (Definiere an Hand eines Beispiels)
 - b. Ist Mg(OH)₂ eine Säure oder Base? Gib genau an wie diese Verbindung entsteht
 - c. Was geschieht wenn man HCl (Säure oder Base) in Wasser gibt? Schreib die Gleichung an (mit Elektronenpaaren und Ladungen)
 - d. Was haben die Ampholyte Wasser und Hydroxid gemeinsam?
 - e. Nennen sie die konjugierte Base(n) von Salpetersäure, Phosphorsäure und Schwefelsäure
 - f. Wie lautet der Name der folgenden Säurereste und wie lautet der Name deren Säure: HCO_3^- , SO_4^- , $H_2PO_4^{-2-}$, Cl^- , HS^- und CO_3^-
- 5. a. Definieren Sie die Begriffe: Oxidation und Reduktionsmittel
 - b. Schreiben Sie die Teilreaktionen für Oxidation und Reduktion an und die Redoxgleichung: Reaktion zwischen Magnesium und Chlor

Reaktion von Eisen und Sauerstoff

Verbrennung von Aluminiun

c. Wer ist das Oxidationsmittel, wer das Reduktionsmittel, wer wird oxidiert, wer wird reduziert

$$Zn + Cl_2$$
 -----> $ZnCl_2$
 $Cl_2 + 2 Br$ ----> $2 Cl$ + Br_2
 $Mg + CuCl_2$ ----> $MgCl_2 + Cu$

d. Welche Reaktionen sind Redox-Reaktionen (geben Sie Oxidationszahlen an):

$$Cl_2 + H_2$$
 -----> 2HCl
 $H_2 SO_4 + CuO$ -----> $CuSO_4 + H_2O$
 $H_2 SO_4 + 2 NaCl$ ----> $Na_2SO_4 + 2 HCl$

- e. Welche Art von Metallen (unedel oder edel)findet man in der folgenden Tabelle auf der rechten Seite von H₂, welche Art auf der linken?
 - K Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb H₂ Cu Ag Hg Au Pt
- f. Auf welcher Seite findet man die guten Oxidations- auf welcher die guten Reduktionsmittel?
- g. Welche Metallverbindungen sind richtig? Bestimmen Sie in den richtigen Verbindungen die Oxidationsstufen des Metalls!
 - PbO, Zn₂O₃, PbO₂, CuCl, FeS, FeCl₃, ZnSO₄, AlO, NaO, K₂O, MgCO₃, FePO₄
- h. Zink ist edler/unedler? als Eisen wer reduziert wen stellen sie die Reaktionsgleichung auf
- i. Was geschieht, wenn ich einen Eisennagel in eine Kupfersulfatlösung tauche? (Reaktionen)
- j. <u>Skizzieren Sie eine galvanische Zelle:</u> links befindet sich eine Kupferelektrode in einer Kupfersulfatlösung und rechts eine Silberelektrode in einer Silbernitratlösung was geschieht? Warum und schreiben Sie die Reaktionen an
- k. <u>Skizzieren Sie eine galvanische Zelle:</u> links befindet sich eine Kupferelektrode in einer Kupfersulfatlösung und rechts eine Zinkelektrode in einer Zinksulfatlösung was geschieht? Warum und schreiben Sie die Reaktionen an
- 6. a. Nennen Sie einige Gewinnungsarten von Wasserstoff
 - b. Beschreiben Sie die Elektrolyse von angesäuertem Wasser
 - c. Was erzeugt die Brennstoffzelle skizzieren sie eine alkalische Brennstoffzelle (Reaktionen)
 - d. Wozu braucht man den meisten Wasserstoff?
 - e. Was versteht man unter der Knallgasreaktion?
 - f. Welche zwei Kerne reagieren bei der Wasserstoffbombe?
- 7. a. Beschreiben Sie das Element Sauerstoff (Eigenschaften, Vorkommen, Verwendung,...)
 - b. Was haben Atmung und Verbrennung gemeinsam (Versuch von Priestly)
 - c. Welche Elemente reagieren mit Sauerstoff nennen Sie einige Verbindungen
 - d. Mit welchem Verfahren wird Sauerstoff gewonnen erklären Sie das Verfahren
 - e. Warum und "wo" ist Ozon lebensnotwendig? Wo ist es schädlich?
 - f. Nennen Sie die drei wichtigsten Merkmale eines Peroxids! Wie entsteht Natriumperoxid? Wie entsteht Wasserstoffperoxid und wie wirkt es?
- 8. a. Welche Elektronenkonfiguration haben Edelgase? Was können sie über ihre Reaktivität sagen?
 - b. Eigenschaften, Gewinnung und Verwendung von Helium
 - c. Wozu verwendet man Neon?
 - d. Welches ist das häufigste und welches das gefährlichste Edelgas und wozu braucht man sie?
- 9. a. Welche Eigenschaften haben die Alkalimetalle? Wie kann man sie nachweisen?
 - b. Wie werden die Alkalimetalle gewonnen? (z.B. Downs-Zelle Reaktionen)
 - c. Ist Lithium ein typisches Alkalimetall und wozu verwendet man es?
 - d. Beschreiben Sie da Element Natrium und seine Reaktion mit Wasser? (Gleichung)
 - e. Vorkommen von Natriumchlorid und was kann man alles aus NaCl gewinnen?
 - f. Welche Rohstoffe braucht man zur Sodaerzeugung mit dem Solvay-Verfahren?
 - g. Was ist Pottasche, wie wird sie hergestellt und wozu braucht man sie?
- 10. a. Welche Eigenschaften haben die Erdalkalimetalle?
 - b. Wozu wird Beryllium verwendet welche Nachteile hat es?
 - c. Aus welchen Mineralien wird Magnesium gewonnen? (Gleichung)
 - d. Eigenschaften, Vorkommen und Gewinnung von Magnesium aus seinem Salz
 - e. Warum ist Kalk ein wichtiges Baumaterial? Was entsteht beim Brennen?
 - f. Chemische Formel von Kalkmörtel und welchen wichtigen Stoff aus der Luft braucht er?
 - g. Was entsteht beim "Erhärten" von Kalk und Gips (mit Formeln)! Was ist Kristallwasser?
 - h. Wie entsteht Zement und Beton und wozu braucht man sie?

- i. Besonderheiten von Strontium, Barium und Radium?
- j. Welche Alkali- und Erdalkalimetalle spielen eine Rolle im menschlichen Körper?
- 11. a. Eigenschaften von Aluminium und was geschieht mit Al an der Luft?
 - b. Beschreiben Sie genau wie Aluminium woraus gewonnen wird
 - c. Wozu braucht man Aluminium? Wie kann man Al ohne Elektrolyse gewinnen?
 - d. Was versteht man unter dem Thermit-Verfahren?
- 12. a. Welche wichtige Zinnlegierung kennen Sie und welche Eigenschaften hat Zinn?
 - b. Wie kommt Zinn in der Natur vor und wie wird Zinn gewonnen?
 - c. Wozu braucht man Zinn und Blei? Nennen Sie drei gemeinsame Eigenschaften
 - d. Blei tritt in der Natur meist als Sulfid (Formel) auf -Gewinnung und Eigenschaften von Blei
 - e. Wie funktioniert der Bleiakkumulator beim Automobil? Geben Sie Reaktionsgleichung an
- 13. a. Welche Verbindungen falsche Anzahlen von Atomen? MgNO₃, Mg(NO₃)₂, BaPO₄, BaPO₃, Ba(PO₄)₂, Ca₃(PO₄)₂, Al₂(HPO₄)₃, NaNO₃, CaNO₂, AlPO₄, CuHPO₄, NaH₂PO₄
 - b. Wie lauten die Formeln für Kalziumphosphat, Aluminiumphosphat, Magnesiumhydrogenphoshat, Magnesiumdihydrogenphoshat?
 - c. Was versteht man unter Karst wie entsteht er und was entsteht?
- 14. a. Eigenschaften, natürliches Vorkommen und Verwendung von Kupfer
 - b. Wie gewinnt man Kupfer beschreiben Sie die elektrolytische Raffination von Kupfer
 - c. Wie kommt Silber in der Natur vor und wie wird es gewonnen?
 - d. Eigenschaften und Verwendung von Silber, warum wird Silber an der Luft schwärzlich?
 - e. Eigenschaften, Verwendung und Gewinnung von Gold und wer greift Gold an?
- 15. a. Wie heißen die Metalle der Nebengruppe IIb und welche Gemeinsamkeiten haben sie?
 - b. Wie gewinnt man Hüttenzink und wie das reine Kathidenzink? (Reaktionen)
 - c. Skizzieren und beschreiben sie ein Leclanche-Element (=Trockenbatterie)
 - d. Wie arbeitet der Nickel-Cadmium Akkumulator?
 - e. Welches Metall kommt bei Raumtemperatur flüssig vor beschreiben sie es
- 16. a. Nennen Sie drei wichtige technisch bedeutsame Übergangsmetalle wozu braucht man sie?
 - b. Woraus und wie gewinnt man Titan (Reaktion) welche Verwendung findet es?
 - c. Welche Metalle gehören in die Chromgruppe und welche Eigenschaften haben sie?
 - d. Formel von Chromit, wie gewinnt man Chrom und welche positiven Eigenschaften hat es?
 - e. Wie werden Metalle gesintert und welche Eigenschaften erhalten sie dadurch?
 - g. Welches Metall hat den höchsten Schmelzpunkt und wozu benötigt man es?
 - h. Nennen Sie die Formel von Braunstein, welche Eigenschaften hat es und was gewinnt man?
- 17. a. Welche Metalle gehören in die Eisengruppe und welche Eigenschaften besitzen sie?
 - b. Wie kommt Eisen in der Natur vor nennen sie die vier wichtigsten Erze was sind Erze?
 - c. Nennen Sie positive und negative Eigenschaften von Eisen
 - d. Was versteht man unter Korrosion? Beschreiben und skizzieren Sie drei Korrosionsarten
 - e. Beschreiben Sie die verschiedene Korrosionstypen Stahlkorrosion mit den Reaktionen
 - f. Wie kann man Metalle vor Korrosion schützen? Was ist Menninge?
 - g. Warum wird ein Eisenblech für eine Autokarosserie verzinkt? Wie macht man dies
 - h. Wozu braucht man eine Opferanode? Geben Sie ein Beispiel mit Reaktionen
 - i. Warum ist Eisen ein wichtiges Spurenelement und welche Eigenschaft besitzt es?
 - j. Beschreiben Sie den Hochofenprozess (mit den wichtigsten Reaktionen)
 - k. Welche Eigenschaften hat Roheisen und wie und warum gewinnt man daraus Stahl?
- 18. a. Wie kamen Cobalt und Nickel zu ihren Namen und welche Bedeutung haben sie heute?
 - b. Welche besonderen Eigenschaften hat Platin und wozu braucht man es daher?
 - c. Welche Metalle eignen sich gut zum Legieren? Warum?

- d. Wie können Metalle in der Natur vorkommen?
- e. Welche Trennungsmethoden kennt man im Bergbau?
- f. Nennen Sie fünf Metalle, die beim Menschen Vergiftungen hervorrufen welche?
- g. Nennen Sie fünf Metalle, die der Mensch als Spurenelement braucht wozu?
- 19. a. Welche Eigenschaften haben Metallcarbide nennen Sie einige (Formel)
 - b. Wie muss man Metallcarbonate und Metallsulfide vor der Gewinnung behandeln?
 - c. Geben Sie eine grobe Übersicht, wie man reines Eisen, Aluminium und Silizium gewinnt!
 - d. Beschreiben Sie allgemein die Eigenschaften eines Metalls (Skizze eines Metallgitters)
 - e. Erklären Sie kurz die Bändertheorie wie sehen die Energiebänder bei einem Isolator, einem Halbleiter und einem Metall aus welche Eigenschaften haben sie dadurch?
 - f. Wie unterscheiden sich n- und p-Halbleiter welche Eigenschaften haben sie?
- 20. a. Stellung der Halbmetalle im PSE und welche Eigenschaften haben sie?
 - b. Warum hat Bor eine Sonderstellung in der Chemie beschreiben Sie sein Gitter
 - c. In welcher Form kommt Bor auf der Erde vor welche Oxide kennen sie von B?
 - d. Gib die Formel und Verwendung an: Borax, Borcarbid, Ferrobor, Borsäure und Perborat
- 21. a. Beschreiben Sie das Element Silicium und Siliciumoxid (Struktur warum nicht SiO₄?)
 - b. Nennen Sie die wichtigsten Sauerstoffsäuren von Silicium und wie verbinden sie sich?
 - c. Was geschieht mit dem Kristallgitter des Quarzes, wenn man es erhitzt und wieder abkühlt?
 - d. Welche Schmelze braucht man zur Herstellung von Normalglas?
 - e. Erklären Sie den Vorgang der Glaserzeugung?
 - f. Was geschieht wenn man Metalloxide zusetzt? Nennen Sie einige Metalloxide und Wirkung
 - g. Nennen Sie wichtigste Gesteine, die aus Silicium bestehen wie sehen sie aus?
 - h. Wie entsteht Ton? Woraus besteht er?
 - i. Wozu braucht man den Werkstoff Ton? Nennen Sie einige Produkte und deren Herstellung
 - j. Nennen Sie wichtige Verbindungen des Siliciums
 - k. Wie wird reines Silicium gewonnen und wozu braucht man es?
 - 1. Wie wird ein dotierter Wafer erzeugt?
- 22. a. In welchen Formen kommt Arsen vor und wozu verwendet man Arsen?
 - b. Was kann man durch die Marsh Probe feststellen? Erkläre Ablauf der Probe
 - c. Welche wichtige Eigenschaften hat Selen als Halbleiter und wozu braucht man es?
 - d. Nennen Sie giftige Halbmetalle Wirkung auf den Körper
- 23. a. Schwefel wird als allotropes Element bezeichnet warum? Beschreibe seine Zustände
 - b. Nennen Sie wichtige Schwefelmineralien (was bedeutet "Rösten") Gewinnung von S
 - c. Was sind Sulfide, Sulfite und Sulfate? Nennen Sie einige Beispiele
 - d. Gewinnung, Verwendung und Formel von Schwefelwasserstoff und Schwefelsäure
 - e. Es gibt vier wichtige Oxide des Schwefels welche und beschreiben Sie sie
- 24. a. Beschreiben Sie die allotropen Modifikationen des Phosphors
 - b. Vorkommen und Verwendung von Phosphor
 - c. Gewinnung, Verwendung und Vorkommen von Stickstoff
 - d. Formel von Ammoniak Gewinnung und Verwendung
 - e. Wie gewinnt man Salpetersäure und wozu braucht man sie?
 - f. Was sind Nitride, Nitrite und Nitrate?
- 25. a. Aufbau und Vorkommen von elementaren Kohlenstoff
 - b. Nennen Sie Oxide des Kohlenstoffs, deren Eigenschaften und Aufbau
 - c. Welche Karbonate und Carbide kennen Sie?
 - d. Was wissen Sie über Halogene?